Tuesday, October 14, 2008

Cont. Biokimia (Photosynthesis)

Photosynthesis uses light energy and carbon dioxide to make triose phosphates (G3P). G3P is generally considered the first end-product of photosynthesis.[citation needed] It can be used as a source of metabolic energy, or combined and rearranged to form monosaccharide or disaccharide sugars, such as glucose or sucrose, respectively, which can be transported to other cells, stored as insoluble polysaccharides such as starch, or converted to structural carbohydrates, such as cellulose or glucans.
A commonly used slightly simplified equation for photosynthesis is:
6 CO2(g) + 12 H2O(l) + photonsC6H12O6(aq) + 6 O2(g) + 6 H2O(l)
carbon dioxide + water + light energy → glucose + oxygen + water
The equation is often presented in introductory chemistry texts in an even more simplified form as:[2]
6 CO2(g) + 6 H2O(l) + photons → C6H12O6(aq) + 6 O2(g)
Photosynthesis occurs in two stages. In the first stage, light-dependent reactions or photosynthetic reactions (also called the Light Reactions) capture the energy of light and use it to make high-energy molecules. During the second stage, the light-independent reactions (also called the Calvin-Benson Cycle, and formerly known as the Dark Reactions) use the high-energy molecules to capture and chemically reduce carbon dioxide (CO2) (also called carbon fixation) to make the precursors of carbohydrates.
In the light reactions, one molecule of the pigment chlorophyll absorbs one photon and loses one electron. This electron is passed to a modified form of chlorophyll called pheophytin, which passes the electron to a quinone molecule, allowing the start of a flow of electrons down an electron transport chain that leads to the ultimate reduction of NADP to NADPH. In addition, this creates a proton gradient across the chloroplast membrane; its dissipation is used by ATP Synthase for the concomitant synthesis of ATP. The chlorophyll molecule regains the lost electron from a water molecule through a process called photolysis, which releases a dioxygen (O2) molecule.
In the Light-independent or dark reactions the enzyme RuBisCO captures CO2 from the atmosphere and in a process that requires the newly formed NADPH, called the Calvin-Benson Cycle, releases three-carbon sugars, which are later combined to form sucrose and starch.
Photosynthesis may simply be defined as the conversion of light energy into chemical energy by living organisms. It is affected by its surroundings, and the rate of photosynthesis is affected by the concentration of carbon dioxide in the air, the light intensity, and the temperature.
Photosynthesis uses only 1% of the entire electromagnetic spectrum, and 2% of the visible spectrum.[citation needed] It has been estimated that the productivity of photosythesis is 115 petagrams (Pg, equals 1015 grams or 109 metric tons).[citation needed]

In plants
Most plants are photoautotrophs, which means that they are able to synthesize food directly from inorganic compounds using light energy - for example from the sun, instead of eating other organisms or relying on nutrients derived from them. This is distinct from chemoautotrophs that do not depend on light energy, but use energy from inorganic compounds.
6 CO2 + 12 H2O → C6H12O6 + 6 O2 + 6 H2O
The energy for photosynthesis ultimately comes from absorbed photons and involves a reducing agent, which is water in the case of plants, releasing oxygen as product. The light energy is converted to chemical energy (known as light-dependent reactions), in the form of ATP and NADPH, which are used for synthetic reactions in photoautotrophs. The overall equation for the light-dependent reactions under the conditions of non-cyclic electron flow in green plants is:[3]
2 H2O + 2 NADP+ + 2 ADP + 2 Pi + light → 2 NADPH + 2 H+ + 2 ATP + O2
Most notably, plants use the chemical energy to fix carbon dioxide into carbohydrates and other organic compounds through light-independent reactions. The overall equation for carbon fixation (sometimes referred to as carbon reduction) in green plants is:[3]
3 CO2 + 9 ATP + 6 NADPH + 6 H+ → C3H6O3-phosphate + 9 ADP + 8 Pi + 6 NADP+ + 3 H2O
To be more specific, carbon fixation produces an intermediate product, which is then converted to the final carbohydrate products. The carbon skeletons produced by photosynthesis are then variously used to form other organic compounds, such as the building material cellulose, as precursors for lipid and amino acid biosynthesis, or as a fuel in cellular respiration. The latter occurs not only in plants but also in animals when the energy from plants gets passed through a food chain. Organisms dependent on photosynthetic and chemosynthetic organisms are called heterotrophs. In general outline, cellular respiration is the opposite of photosynthesis: Glucose and other compounds are oxidized to produce carbon dioxide, water, and chemical energy. However, the two processes take place through a different sequence of chemical reactions and in different cellular compartments.
Plants absorb light primarily using the pigment chlorophyll, which is the reason that most plants have a green color. The function of chlorophyll is often supported by other accessory pigments such as carotenes and xanthophylls. Both chlorophyll and accessory pigments are contained in organelles (compartments within the cell) called chloroplasts. Although all cells in the green parts of a plant have chloroplasts, most of the energy is captured in the leaves. The cells in the interior tissues of a leaf, called the mesophyll, can contain between 450,000 and 800,000 chloroplasts for every square millimeter of leaf. The surface of the leaf is uniformly coated with a water-resistant waxy cuticle that protects the leaf from excessive evaporation of water and decreases the absorption of ultraviolet or blue light to reduce heating. The transparent epidermis layer allows light to pass through to the palisade mesophyll cells where most of the photosynthesis takes place.
Plants convert light into chemical energy with a maximum photosynthetic efficiency of approximately 6%.[4][5][6] By comparison solar panels convert light into electric energy at a photosynthetic efficiency of approximately 10-20%. Actual plant's photosynthetic efficiency varies with the frequency of the light being converted, light intensity, temperature and proportion of CO2 in atmosphere.

In algae and bacteria
Algae come in multiple forms from multicellular organisms like kelp, to microscopic, single-cell organisms. Although they are not as complex as land plants, the biochemical process of photosynthesis is the same. Very much like plants, algae have chloroplasts and chlorophyll, but various accessory pigments are present in some algae such as phycocyanin, carotenes, and xanthophylls in green algae and phycoerythrin in red algae (rhodophytes), resulting in a wide variety of colors. Brown algae and diatoms contain fucoxanthol as their primary pigment. All algae produce oxygen, and many are autotrophic. However, some are heterotrophic, relying on materials produced by other organisms. For example, in coral reefs, there is a mutualistic relationship between zooxanthellae and the coral polyps.[7]
Photosynthetic bacteria do not have chloroplasts (or any membrane-bound organelles). Instead, photosynthesis takes place directly within the cell. Cyanobacteria contain thylakoid membranes very similar to those in chloroplasts and are the only prokaryotes that perform oxygen-generating photosynthesis. In fact, chloroplasts are now considered to have evolved from an endosymbiotic bacterium, which was also an ancestor of cyanobacterium.
The other photosynthetic bacteria have a variety of different pigments, called bacteriochlorophylls, and use electron donors different from water and thus do not produce oxygen. Some bacteria, such as Chromatium, oxidize hydrogen sulfide instead of water for photosynthesis, producing sulfur as waste. Other photosynthetic bacteria oxidize ferrous iron to ferric iron,[8] others nitrite to nitrate,[9] and still others use arsenites, producing arsenates.[10]
All photosynthesizing organisms must be in the photic (light-receiving) zone, except for those near hydrothermal vents which give faint light.

Evolution

Plant cells with visible chloroplasts.
Early photosynthetic systems, such as those from green and purple sulfur and green and purple non-sulfur bacteria, are thought to have been anoxygenic, using various molecules as electron donors. Green and purple sulfur bacteria are thought to have used hydrogen and sulfur as an electron donor. Green nonsulfur bacteria used various amino and other organic acids. Purple nonsulfur bacteria used a variety of non-specific organic molecules. The use of these molecules is consistent with the geological evidence that the atmosphere was highly reduced at that time.[citation needed]
Fossils of what are thought to be filamentous photosynthetic organisms have been dated at 3.4 billion years old.[11]
The main source of oxygen in the atmosphere is oxygenic photosynthesis, and its first appearance is sometimes referred to as the oxygen catastrophe. Geological evidence suggests that oxygenic photosynthesis, such as that in cyanobacteria, became important during the Paleoproterozoic era around 2 billion years ago. Modern photosynthesis in plants and most photosynthetic prokaryotes is oxygenic. Oxygenic photosynthesis uses water as an electron donor which is oxidized to molecular dioxygen (O2) in the photosynthetic reaction center.

Origin of chloroplasts
In plants photosynthesis occurs in organelles called chloroplasts. Chloroplasts have many similarities with photosynthetic bacteria including a circular chromosome, prokaryotic-type ribosomes, and similar proteins in the photosynthetic reaction center.[12][13]
The endosymbiotic theory suggests that photosynthetic bacteria were acquired (by endocytosis) by early eukaryotic cells to form the first plant cells. Therefore, chloroplasts may be photosynthetic bacteria that adapted to life inside plant cells. Like mitochondria, chloroplasts still possess their own DNA, separate from the nuclear DNA of their plant host cells and the genes in this chloroplast DNA resemble those in cyanobacteria.[14]
Marine molluscs Elysia viridis and Elysia chlorotica likewise maintain a symbiotic relationship with chloroplasts that they capture from the algae that they ingest. This allows the molluscs to survive solely by photosynthesis for several months at a time.[15]

Cyanobacteria and the evolution of photosynthesis
The biochemical capacity to use water as the source for electrons in photosynthesis evolved once, in a common ancestor of extant cyanobacteria. The geological record indicates that this transforming event took place early in Earth's history, at least 2450-2320 million years ago (Ma), and possibly much earlier.[citation needed] Available evidence from geobiological studies of Archean (>2500 Ma) sedimentary rocks indicates that life existed 3500 Ma, but the question of when oxygenic photosynthesis evolved is still unanswered. A clear paleontological window on cyanobacterial evolution opened about 2000 Ma, revealing an already-diverse biota of blue-greens. Cyanobacteria remained principal primary producers throughout the Proterozoic Eon (2500-543 Ma), in part because the redox structure of the oceans favored photoautotrophs capable of nitrogen fixation.[citation needed] Green algae joined blue-greens as major primary producers on continental shelves near the end of the Proterozoic, but only with the Mesozoic (251-65 Ma) radiations of dinoflagellates, coccolithophorids, and diatoms did primary production in marine shelf waters take modern form. Cyanobacteria remain critical to marine ecosystems as primary producers in oceanic gyres, as agents of biological nitrogen fixation, and, in modified form, as the plastids of marine algae.[16]

Molecular production

Light-dependent reactions of photosynthesis at the thylakoid membrane

Temporal Order
The overall process of photosynthesis takes place in four stages. The first, energy transfer in antenna chlorophyll takes place in the femtosecond [1 femtosecond (fs) = 10,−15 s] to picosecond [1 picosecond (ps) = 10−12 s] time scale. The next phase, the transfer of electrons in photochemical reactions, takes place in the picosecond to nanosecond time scale [1 nanosecond (ns) = 10−9 s]. The third phase, the electron transport chain and ATP synthesis, takes place on the microsecond [1 microsecond (μs) = 10−6 s] to millisecond [1 millisecond (ms) = 10−3 s) time scale. The final phase is carbon fixation and export of stable products and takes place in the millisecond to second time scale. The first three stages occur in the thylakoid membranes.

Light to chemical energy
Main article: Light-dependent reaction
The light energy is converted to chemical energy using the light-dependent reactions. This chemical energy production is about 5-6% efficient, with the majority of the light that strikes a plant reflected and not absorbed.[4] However, of the energy that is absorbed, approximately 30-50% is captured as chemical energy.[17] The products of the light-dependent reactions are ATP from photophosphorylation and NADPH from photoreduction. Both are then utilized as an energy source for the light-independent reactions.
Not all wavelengths of light can support photosynthesis. The photosynthetic action spectrum depends on the type of accessory pigments present. For example, in green plants, the action spectrum resembles the absorption spectrum for chlorophylls and carotenoids with peaks for violet-blue and red light. In red algae, the action spectrum overlaps with the absorption spectrum of phycobilins for blue-green light, which allows these algae to grow in deeper waters that filter out the longer wavelengths used by green plants. The non-absorbed part of the light spectrum is what gives photosynthetic organisms their color (e.g., green plants, red algae, purple bacteria) and is the least effective for photosynthesis in the respective organisms.

Z scheme

A Photosystem: A light-harvesting cluster of photosynthetic pigments present in the thylakoid membrane of chloroplasts.

The "Z scheme"
In plants, light-dependent reactions occur in the thylakoid membranes of the chloroplasts and use light energy to synthesize ATP and NADPH. The light-dependent reaction has two forms; cyclic and non-cyclic reaction. In the non-cyclic reaction, the photons are captured in the light-harvesting antenna complexes of photosystem II by chlorophyll and other accessory pigments (see diagram at right). When a chlorophyll molecule at the core of the photosystem II reaction center obtains sufficient excitation energy from the adjacent antenna pigments, an electron is transferred to the primary electron-acceptor molecule, Pheophytin, through a process called Photoinduced charge separation. These electrons are shuttled through an electron transport chain, the so called Z-scheme shown in the diagram, that initially functions to generate a chemiosmotic potential across the membrane. An ATP synthase enzyme uses the chemiosmotic potential to make ATP during photophosphorylation, whereas NADPH is a product of the terminal redox reaction in the Z-scheme. The electron enters the Photosystem I molecule. The electron is excited due to the light absorbed by the photosystem. A second electron carrier accepts the electron, which again is passed down lowering energies of electron acceptors. The energy created by the electron acceptors is used to move hydrogen ions across the thylakoid membrane into the lumen. The electron is used to reduce the co-enzyme NADP, which has functions in the light-independent reaction. The cyclic reaction is similar to that of the non-cyclic, but differs in the form that it generates only ATP, and no reduced NADP (NADPH) is created. The cyclic reaction takes place only at photosystem I. Once the electron is displaced from the photosystem, the electron is passed down the electron acceptor molecules and returns back to photosystem I, from where it was emitted, hence the name cyclic reaction.

Water photolysis
Main articles: Photodissociation and Oxygen evolution
The NADPH is the main reducing agent in chloroplasts, providing a source of energetic electrons to other reactions. Its production leaves chlorophyll with a deficit of electrons (oxidized), which must be obtained from some other reducing agent. The excited electrons lost from chlorophyll in photosystem I are replaced from the electron transport chain by plastocyanin. However, since photosystem II includes the first steps of the Z-scheme, an external source of electrons is required to reduce its oxidized chlorophyll a molecules. The source of electrons in green-plant and cyanobacterial photosynthesis is water. Two water molecules are oxidized by four successive charge-separation reactions by photosystem II to yield a molecule of diatomic oxygen and four hydrogen ions; the electron yielded in each step is transferred to a redox-active tyrosine residue that then reduces the photoxidized paired-chlorophyll a species called P680 that serves as the primary (light-driven) electron donor in the photosystem II reaction center. The oxidation of water is catalyzed in photosystem II by a redox-active structure that contains four manganese ions; this oxygen-evolving complex binds two water molecules and stores the four oxidizing equivalents that are required to drive the water-oxidizing reaction. Photosystem II is the only known biological enzyme that carries out this oxidation of water. The hydrogen ions contribute to the transmembrane chemiosmotic potential that leads to ATP synthesis. Oxygen is a waste product of light-independent reactions, but the majority of organisms on Earth use oxygen for cellular respiration, including photosynthetic organisms.

Quantum mechanical effects
Through photosynthesis, sunlight energy is transferred to molecular reaction centers for conversion into chemical energy with nearly 100-percent efficiency. The transfer of the solar energy takes place almost instantaneously, so little energy is wasted as heat. However, only 43% of the total solar incident radiation can be used (only light in the range 400-700 nm), 20% of light is blocked by canopy, and plant respiration requires about 33% of the stored energy, which brings down the actual efficiency of photosynthesis to about 6.6%.[6]
A study led by researchers with the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California at Berkeley suggests that long-lived wavelike electronic quantum coherence plays an important part in this instantaneous transfer of energy by allowing the photosynthetic system to simultaneously try each potential energy pathway and choose the most efficient option. Results of the study are presented in the April 12, 2007 issue of the journal Nature.[18]

Oxygen and photosynthesis
With respect to oxygen and photosynthesis, there are two important concepts.
Plant and cyanobacterial (blue-green algae) cells also use oxygen for cellular respiration, although they have a net output of oxygen since much more is produced during photosynthesis.
Oxygen is a product of the light-driven water-oxidation reaction catalyzed by photosystem II; it is not generated by the fixation of carbon dioxide. Consequently, the source of oxygen during photosynthesis is water, not carbon dioxide.

Bacterial variation
The concept that oxygen production is not directly associated with the fixation of carbon dioxide was first proposed by Cornelis Van Niel in the 1930s, who studied photosynthetic bacteria. Aside from the cyanobacteria, bacteria only have one photosystem and use reducing agents other than water. They get electrons from a variety of different inorganic chemicals including sulfide or hydrogen, so for most of these bacteria oxygen is not produced.
Others, such as the halophiles (an Archaea), produced so-called purple membranes where the bacteriorhodopsin could harvest light and produce energy. The purple membranes was one of the first to be used to demonstrate the chemiosmotic theory: light hit the membranes and the pH of the solution that contained the purple membranes dropped as protons were pumping out of the membrane.

Overview of the Calvin cycle and carbon fixation

Carbon fixation
Main articles: Carbon fixation and Light-independent reaction
The fixation or reduction of carbon dioxide is a light-independent process in which carbon dioxide combines with a five-carbon sugar, ribulose 1,5-bisphosphate (RuBP), to yield two molecules of a three-carbon compound, glycerate 3-phosphate (GP), also known as 3-phosphoglycerate (PGA). GP, in the presence of ATP and NADPH from the light-dependent stages, is reduced to glyceraldehyde 3-phosphate (G3P). This product is also referred to as 3-phosphoglyceraldehyde (PGAL) or even as triose phosphate. Triose is a 3-carbon sugar (see carbohydrates). Most (5 out of 6 molecules) of the G3P produced is used to regenerate RuBP so the process can continue (see Calvin-Benson cycle). The 1 out of 6 molecules of the triose phosphates not "recycled" often condense to form hexose phosphates, which ultimately yield sucrose, starch and cellulose. The sugars produced during carbon metabolism yield carbon skeletons that can be used for other metabolic reactions like the production of amino acids and lipids.

C4 and C3 photosynthesis and CAM

Overview of C4 carbon fixation
In hot and dry conditions, plants will close their stomata to prevent loss of water. Under these conditions, CO2 will decrease, and dioxygen gas, produced by the light reactions of photosynthesis, will increase in the leaves, causing an increase of photorespiration by the oxygenase activity of ribulose-1,5-bisphosphate carboxylase/oxygenase and decrease in carbon fixation. Some plants have evolved mechanisms to increase the CO2 concentration in the leaves under these conditions.
Main article: C4 carbon fixation
C4 plants chemically fix carbon dioxide in the cells of the mesophyll by adding it to the three-carbon molecule phosphoenolpyruvate (PEP), a reaction catalyzed by an enzyme called PEP carboxylase and which creates the four-carbon organic acid, oxaloacetic acid. Oxaloacetic acid or malate synthesized by this process is then translocated to specialized bundle sheath cells where the enzyme, rubisco, and other Calvin cyle enzymes are located, and where CO2 released by decarboxylation of the four-carbon acids is then fixed by rubisco activity to the three-carbon sugar 3-phosphoglycerate. The physical separation of rubisco from the oxygen-generating light reactions reduces photorespiration and increases CO2 fixation and thus photosynthetic capacity of the leaf. [19] C4 plants can produce more sugar than C3 plants in conditions of high light and temperature. Many important crop plants are C4 plants including maize, sorghum, sugarcane, and millet. Plants lacking PEP-carboxylase are called C3 plants because the primary carboxylation reaction, catalyzed by Rubiso, produces the three-carbon sugar 3-phosphoglycerate directly in the Calvin-Benson Cycle.
Main article: CAM photosynthesis
Xerophytes such as cacti and most succulents also use PEP carboxylase to capture carbon dioxide in a process called Crassulacean acid metabolism (CAM). In contrast to C4 metabolism, which physically separates the CO2 fixation to PEP from the Calvin cycle, CAM only temporally separates these two processes. CAM plants have a different leaf anatomy than C4 plants, and fix the CO2 at night, when their stomata are open. CAM plants store the CO2 mostly in the form of malic acid via carboxylation of phosphoenolpyruvate to oxaloacetate, which is then reduced to malate. Decarboxylation of malate during the day releases CO2 inside the leaves thus allowing carbon fixation to 3-phosphoglycerate by rubisco.

Discovery
Although some of the steps in photosynthesis are still not completely understood, the overall photosynthetic equation has been known since the 1800s.
Jan van Helmont began the research of the process in the mid-1600s when he carefully measured the mass of the soil used by a plant and the mass of the plant as it grew. After noticing that the soil mass changed very little, he hypothesized that the mass of the growing plant must come from the water, the only substance he added to the potted plant. His hypothesis was partially accurate - much of the gained mass also comes from carbon dioxide as well as water. However, this was a signaling point to the idea that the bulk of a plant's biomass comes from the inputs of photosynthesis, not the soil itself.
Joseph Priestley, a chemist and minister, discovered that when he isolated a volume of air under an inverted jar, and burned a candle in it, the candle would burn out very quickly, much before it ran out of wax. He further discovered that a mouse could similarly "injure" air. He then showed that the air that had been "injured" by the candle and the mouse could be restored by a plant.
In 1778, Jan Ingenhousz, court physician to the Austrian Empress, repeated Priestley's experiments. He discovered that it was the influence of sunlight on the plant that could cause it to rescue a mouse in a matter of hours.
In 1796, Jean Senebier, a Swiss pastor, botanist, and naturalist, demonstrated that green plants consume carbon dioxide and release oxygen under the influence of light. Soon afterwards, Nicolas-Théodore de Saussure showed that the increase in mass of the plant as it grows could not be due only to uptake of CO2, but also to the incorporation of water. Thus the basic reaction by which photosynthesis is used to produce food (such as glucose) was outlined.
Cornelis Van Niel made key discoveries explaining the chemistry of photosynthesis. By studying purple sulfur bacteria and green bacteria he was the first scientist to demonstrate that photosynthesis is a light-dependent redox reaction, in which hydrogen reduces carbon dioxide.
Robert Emerson discovered two light reactions by testing plant productivity using different wavelengths of light. With the red alone, the light reactions were suppressed. When blue and red were combined, the output was much more substantial. Thus, there were two photosystems, one aborbing up to 600 nm wavelengths, the other up to 700. The former is known as PSII, the latter is PSI. PSI contains only chlorophyll a, PSII contains primarily chlorophyll a with most of the available chlorophyll b, among other pigments.[20]
Further experiments to prove that the oxygen developed during the photosynthesis of green plants came from water, were performed by Robert Hill in 1937 and 1939. He showed that isolated chloroplasts give off oxygen in the presence of unnatural reducing agents like iron oxalate, ferricyanide or benzoquinone after exposure to light. The Hill reaction is as follows:
2 H2O + 2 A + (light, chloroplasts) → 2 AH2 + O2
where A is the electron acceptor. Therefore, in light the electron acceptor is reduced and oxygen is evolved. Cyt b6, now known as a plastoquinone, is one electron acceptor.
Samuel Ruben and Martin Kamen used radioactive isotopes to determine that the oxygen liberated in photosynthesis came from the water.
Melvin Calvin and Andrew Benson, along with James Bassham, elucidated the path of carbon assimilation (the photosynthetic carbon reduction cycle) in plants. The carbon reduction cycle is known as the Calvin cycle, which inappropriately ignores the contribution of Bassham and Benson. Many scientists refer to the cycle as the Calvin-Benson Cycle, Benson-Calvin, and some even call it the Calvin-Benson-Bassham (or CBB) Cycle.
A Nobel Prize winning scientist, Rudolph A. Marcus, was able to discover the function and significance of the electron transport

Cont. Biokimia (Carbohydrate Metabolism)

Carbohydrate metabolism denotes the various biochemical processes responsible for the formation, breakdown and interconversion of carbohydrates in living organisms.
The most important carbohydrate is glucose, a simple sugar (monosaccharide) that is metabolized by nearly all known organisms. Glucose and other carbohydrates are part of a wide variety of metabolic pathways across species: plants synthesize carbohydrates from atmospheric gases by photosynthesis storing the absorbed energy internally, often in the form of starch or lipids. Plant components are eaten by animals and fungi, and used as fuel for cellular respiration. Oxidation of one gram of carbohydrate yields approximately 4 kcal of energy and from lipids about 9 kcal. Energy obtained from metabolism is usually stored temporarily within cells in the form of ATP. Organisms capable of aerobic respiration metabolize glucose and oxygen to release energy with carbon dioxide and water as byproducts.
Carbohydrates are a superior short-term fuel for organisms because they are simpler to metabolize than fats or proteins. In animals, the most important carbohydrate is glucose; so much so, that the level of glucose is used as the main control for the central metabolic hormone, insulin. Starch, and cellulose in a few animals (eg, termites, ruminants, and some bacteria), being both glucose polymers are disassembled during digestion and absorbed as glucose. Other simple carbohydrates have their own enzymatic oxidation pathways, as do some of the more complex carbohydrates. The disaccharide lactose, for instance, requires the enzyme lactase to be broken into into its monosaccharides components; many animals lack this enzyme in adulthood.
Carbohydrates are typically stored as long polymers of glucose molecules with Glycosidic bonds for structural support (e.g. chitin, cellulose) or for energy storage (e.g. glycogen, starch). However, the strong affinity of most carbohydrates for water makes storage of large quantities of carbohydrates inefficient due to the large molecular weight of the solvated water-carbohydrate complex. In some organisms, such as plants, excess carbohydrates are sometimes catabolised to form Acetyl-CoA, which is a feed stock for the fatty acid synthesis pathway; fatty acids, triglycerides, and other lipids are commonly used for long-term energy storage. The hydrophobic character of lipids makes them a much more compact form of energy storage than hydrophilic carbohydrates. However, animals, including humans, lack the necessary enzymatic machinery and so do not synthesize lipids from carbohydrate.
All carbohydrates share a general formula of approximately CnH2nOn; glucose is C6H12O6. Monosaccharides may be chemically bonded together to form disaccharides such as sucrose and longer polysaccharides such as starch and cellulose.

Saturday, October 11, 2008

E-Learning for Agrotech

Cont. Sistem Komputer

Bagaimana Komputer Berfungsi???

Teknologi dalam komputer digital telah melalui perubahan besar sejak komputer yang pertama pada tahun 1940. Namun kebanyakannya masih menggunakan senibina von Neumann, yang dicadangkan oleh John von Neumann pada awal 1940-an.

Senibina von Neumann menyatakan komputer dibahagi kepada 4 bahagian utama: Unit Aritmetik dan Logik, litar pengawal, memori, dan alat input-output (I/O). Kesemua bahagian ini disambung bersama oleh wayar-wayar, yang dikenali sebagai "bas".


Ingatan

Di dalam sistem komputer, ingatan ialah jujukan bait (seperti sel), di mana setiap satunya mengandungi sebutir maklumat. Maklumat tersebut mungkin adalah arahan untuk komputer, dan setiap sel menyimpan serpihan data yang diperlukan komputer untuk menjalankan arahan.

Secara amnya, ingatan boleh diguna semula lebih sejuta kali. Ia lebih berupa pad lakaran, daripada batu tablet yang hanya boleh ditulis sekali.

Saiz setiap sel, dan bilangannya, berbeza di antara satu komputer dengan komputer yang lain. Begitu juga dengan teknologi memori tersebut, daripada denyutan elektromekanik, seterusnya tiub raksa, seterusnya kepada susunan matriks magnet kekal, seterusnya kepada transistor, dan seterusnya litar bersepadu yang mengandungi berjuta kapasitor dalam sebiji cip.




Pemprosesan
Unit Aritmetik dan Logik (ALU), ialah alat yang melaksanakan operasi asas, seperti operasi aritmetik (tambah, tolak, darab, dan sebagainya), operasi logik (AND, OR, NOT) dan membandingkan operasi. Unit ini melakukan tugas sebenar dalam komputer.

Unit pengawal menyelia slot-slot yang menyimpan arahan terkini, seterusnya memberitahu ALU tentang operasi yang perlu dilakukan serta menerima maklumat yang perlu (daripada memori) untuk melaksanakan operasi tersebut. Kemudiannya ia menghantar kembali hasil operasi ke kedudukan memori yang sesuai. Setelah itu, Unit Pengawal akan beralih kepada arahan yang seterusnya.


Input-Output
Unit Input-output membenarkan komputer menerima maklumat daripada dunia luar, dan menghantar keputusan maklumat kembali ke dunia luar. Terdapat pelbagai bentuk alat I/O, daripada Papan kekunci, skrin, Cakera liut, kepada alat yang luar biasa, seperti Webcam.

Kesemua alat (peranti) input mengkod maklumat kepada data supaya boleh diproses oleh sistem komputer digital. Alat (peranti) output pula menyahkod data komputer kepada maklumat yang boleh difahami oleh pengguna komputer.


Arahan
Arahan komputer bukanlah arahan berbunga seperti bahasa manusia. Komputer hanya mempunyai arahan-arahan mudah yang terhad. Arahan biasa yang disokong oleh kebanyakan komputer adalah seperti: Salin kandungan sel 123, dan letak salinan ke sel 456; tambahkan kandungan sel 666 ke sel 042, dan letak hasil tambahan ke sel 013; sekiranya sel 999 adalah 0, arahan seterusnya ialah pada sel 345.

Arahan-arahan tersebut diwakili sebagai angka (numbers). Contohnya, Kod untuk "Salin" mungkin adalah 001. Set Arahan yang disokong oleh komputer dipanggil Bahasa Mesin. Secara praktiknya, arahan untuk komputer biasanya tidak ditulis dalam bentuk Bahasa Mesin, tapi dalam bentuk Bahasa Pengaturcaraan Tahap Tinggi (High Level Programming Language). Bahasa pengaturcaraan kemudiaanya dialihbahasa kepada Bahasa Mesin dengan menggunakan Program Komputer khas (seperti Pengkompil - compiler, atau Interpreter).

Sesetengah bahasa pengaturcaraan adalah dalam bentuk yang hampir dengan Bahasa Mesin, contohnya Bahasa Penghimpun - (juga dikenali sebagai Bahasa Tahap Rendah - ); Manakala sesetengah bahasa mengguna prinsip yang jauh berbeza dengan operasi mesin, contohnya Prolog.


Seni bina
Komputer moden meletakkan ALU (Unit Aritmetik dan Logik) dan Unit Pengawal di dalam satu litar bersepadu yang dikenali sebagai Unit Pemproses Pusat (Central Processing Unit - CPU). Kebiasaanya, memori komputer akan diletak pada beberapa litar bersepadu kecil berhampiran dengan CPU. Alat-alat yang lain dalam komputer adalah bekalan kuasa dan alat input-output.

Fungsi sebuah komputer secara prinsipnya agak jelas. Komputer menyambut arahan dan data daripada memori. Arahan kemudiannya dilaksanakan, hasilnya disimpan, dan seterusnya menyambut arahan yang berikutnya pula. Prosedur ini diulang sehingga komputer itu ditutup.


Program
Program Komputer ialah satu senarai arahan yang besar untuk dilaksana oleh komputer. Kebanyakan Program Komputer mempunyai berjuta arahan, dan kebanyakan daripada arahan-arahan tersebut dilaksanakan berulang-kali. Sebuah Komputer peribadi yang moden berupaya melaksanakan lebih kurang 2-3 bilion arahan per saat.

Pada masa sekarang, kebanyakan komputer berupaya melaksanakan lebih dari satu program pada satu masa. Keupayaan ini dinamakan multitugas. Walaupun secara kasarnya, seolah-olah komputer melakukan dua kerja sekaligus, sebenarnya CPU melaksanakan arahan daripada satu program dahulu, kemudian beralih ke program yang satu lagi pada jangka masa sejenak. Jangka masa sejenak ini dipanggil Hirisan Masa (Time Slice). Sistem Pengoperasian ialah program yang mengawal perkongsian masa ini.

Contoh sistem pengoperasian yang membenarkan multitasking ialah Windows dan Unix

E-Learning for Agrotech

Agrotek

Friday, October 10, 2008

Thursday, October 9, 2008

INFO Etnik

Kaum-kaum di Malaysia












Malaysia merupakan salah satu negara berbilang kaum yang dapat hidup dengan harmoni. Antara tiga kaum utama di Malaysia Cina, Melayu dan India telahpun menetap di tanah ini selama 5 abad. Selain itu, Malaysia juga merupakan tanah air kepada sebanyak kira kira 80 kaum etnik, terutamanya di Malaysia Timur. Antaranya termasuklah Baba dan Nyonya, Kadazandusun dan Iban.


Orang Melayu






















Pakaian : baju melayu, kebaya, kurung songkok, kain pelikat..
Makanan : laksa, kuih koci, buah melaka, kuih lapis, nasi lemak..
Permainan : congkak, gasing, wau..
Alat muzik : kompang, gong, rebana, gambus..
Perayaan : Hari Raya Aidrilfitri(Puasa), Hari Raya Haji
Tarian : tarian keris, tarian inai, tarian piring, tarian lilin..
Kepercayaan : Agama Islam
Bahasa : Bahasa Melayu



Orang Cina






















Pakaian : Cheongsam, Sam Fu..
Suku kaum : Teochew, Hakka, Hokkien..
Makanan : Kuih bakul, kuih bulan, pulut nasi, dimsum.
Permainan : catur cina
Alat muzik : gitar bulan, dram,
Perayaan : Tahun Baru Cina, Chap Goh Mei, Pesta Kuih Bulan
Tarian : Tarian kipas, tarian singa, tarian payung..
Kepercayaan : Agama Buddha, Taoisme, Kristian
Bahasa : Mandarin, Hokkien, Hakka, Kantonis, Teochew..


Orang India








































Pakaian : Sari, serban, kurta, dhoti, sarung..
Makanan : tosai, idli, muruku, apam, kesari, ladu,
Permainan : kaudi Alat muzik : veena, sitar, ukulele, sapei..
Perayaan : Hari Deepavali, Thaipusam, Ponggal, Vaigunda Ekadashi, Christmas, Onam, Hari Raya
Tarian : tarian serimpi, Shobana Chanarakumar, Bharata Natyam
Kepercayaan : Agama Hindu, Kristian, Islam
Bahasa : Bahasa Telugu, Tamil, Hindi, dan Malayalam



Baba dan Nyonya














Baba dan Nyonya adalah segolongan keturunan kaum Cina yang terdapat di Negeri-negeri Selat, Tanah Melayu (kini sebahagian Malaysia), khususnya di negeri Melaka.

Bagaimanapun, sebahagian mereka enggan mengakui bahawa mereka adalah orang Cina tetapi rakyat British dan berbangga dengan kedudukan ini. Tambahan pula, mereka mengeji pendatang-pendatang Cina yang baru, [1] dan mempunyai kelab tersendiri yang tidak membenarkan pendatang-pendatang Cina masuk. Mereka memanggil diri mereka sebagai "Baba" atau "Peranakan" kerana kebudayaan mereka, yang berasal daripada warisan tradisi Cina, mempunyai unsur-unsur pengaruh kebudayaan Melayu.

Penyesuaian dan resapan budaya mereka terhadap suasana sosio-budaya di persekitaran mereka di zaman silam, iaitu melalui perkahwinan campur yang berlaku di antara kaum-kaum Cina dan Melayu, adalah punca utama mengapa generasi-generasi seterusnya memanggil mereka sebagai "Baba".


Suku Bajau
Suku kaum Bajau banyak terdapat di negeri Sabah. Suku kaum Bajau adalah antara penduduk asal kepulauan Borneo sejak berabad-abad lamanya, atau sejak kewujudan bangsa Melayu di Nusantara kerana suku kaum Bajau adalah serpihan Melayu gelombang kedua yang datang ke Nusantara.

Suku kaum Bajau mendiami kawasan pesisir pantai dari Tawau hingga ke Labuan, dengan kepadatan tertinggi di Semporna, Lahad Datu dan Kudat.

Kini masyarakat Bajau telah ramai menetap di Semenanjung Malaysia.

Seratus persen suku kaum Bajau menganut agama Islam. Suku kaum Bajau sangat menekankan hubungan kekeluargaan dan "le'od" iaitu kelompok sedaerah.

Sesuai dengan perkembangan masa kini, kini ramai masyarakat Bajau dikahwini dan/atau mengahwini bangsa-bangsa lain termasuk Cina, Arab, India dan suku-suku kaum tempatan di Malaysia.

Bahasa orang Bajau dikenali sebagai sinama. Kata sinama adalah kata terbitan daripada kata akar Sama dengan menerima sisipan -in- sehingga membentuk sinama yang bermaksud bahasa kepunyaan bangsa Sama.

Suku kaum Bajau sebenarnya bukanlah merupakan satu suku tetapi ia merupakan satu bangsa yang lebih besar. Berdasarkan kajian awal oleh Badan Galak Pusaka sekurang-kurangnya terdapat 26 subdialek bahasa Bajau atau Sinama. Juga didapati bahawa suku kaum Bajau adalah bangsa Melayu yang sebenar (Melayu Asli).

Selain di Malaysia, bangsa Bajau juga turut mewarganegarai negara-negara seperti Indonesia, Filipina dan Brunei Darussalam.


Suku Momogun Rungus
Rungus juga di kenali sebagai Dusun Laut atau Dayak Dusun. Secara tradisi suku Momogun Rungus adalah pengamal sistem pemerintahan kesukuan yang di bentuk oleh Kesatuan Bobolizan Rinovusan pada zaman lampau sebelum zaman penjajahan British di semenanjung Kudat dan Teluk Marudu dan Pitas.

Suku kaum Rungus merupakan penduduk terbesar di kawasan utara Sabah. Suku kaum Rungus adalah penduduk asli kepulauan Borneo sejak berabad-abad lamanya. Suku Rungus juga dikenali sebagai Momogun, Dayak Dusun, Dayak Laut, Momogun Rungus, Melobong Rungus, Momogun Laut atau Dusun Laut. Rungus merupakan nama nenek moyang mereka yang di kenali sebagai Aki Rungsud. Aki Rungsud adalah tokoh bangsa Momogun Rungus yang telah membuka Teluk Bandau sebagai Pusat Perdagangan Sistem Barter pada zaman lampau.

Suku kaum Momogun Rungus mendiami kawasan pesisir pantai barat Kudat, pantai timur Kudat, Teluk Marudu, Pitas hingga ke Beluran dan juga kepulauan sekitar Kudat, dengan kepadatan tertinggi di kawasan Kudat, Kota Marudu, Pitas, Paitan, Telupid, Kinabatangan dan Beluran.

Pada hari ini kira-Kira 79% suku kaum Momogun Rungus adalah menganut agama Kristian, kira 20% adalah penganut Agama Labus (Lzabvus) iaitu agama nenek moyang Momogun Rungus dan kira-kira 1% Momogun Rungus yang beragama Islam hasil perkawinan campur. Suku kaum Momogun Rungus sangat menekankan adat-adat nenek moyang, hukum-hukum agama labus serta hubungan kekeluargaan.

Bahasa Momogun Rungus dikenali sebagai Boros Momogun atau Bahasa Rungus. Kata Momogun adalah kata terbitan daripada kata akar "pogun" dengan menyambungkan sebutan -mom- sehingga membentuk kata "momogun" yang bermaksud "pemilik tanah". Perkataan ini terhasil dari doktrin agama tradisi bangsa Momogun Rungus iaitu Agama Labus. "Agama Labus" adalah terhasil dari 2 perkataan dari bahasa Momogun Rungus iaitu "AGAMA" dan "LABUS".

AGAMA dalam bahasa Momogun Rungus adalah berasal dari kata asas iaitu "A" dan "Gama". "A" merujuk kepada "boleh". Manakala "gama" bermakna "lakukan", "buat" atau "amalkan".

LABUS (bunyi sebutan ialah Lzabvus) dalam bahasa Momogun Rungus adalah dari kata asas "Labus" yang bermakna "keluar".

Jadi Agama Labus bermakna "satu set atau satu himpunan Hukum-Hukum, amalan-amalan dan peraturan-peraturan moral dari bangsa Momogun Rungus yang mampu mengelakkan atau mengeluarkan masyarakat mereka dari hukuman-hukuman Kinoringan iaitu Tuhan bangsa Momogun Rungus".

Suku kaum Momogun Rungus sebenarnya bukanlah merupakan satu suku tetapi ia merupakan satu bangsa yang lebih besar. Ini berikutan berdasarkan kesamaan dari segi bahasa, seni arkitektur, kepercayaan, pandangan alam serta segi etnologinya Momogun Rungus di dapati mempunyai persamaan dengan rumpun Dayak Kalimantan, Dayak Sarawak dan Kadazan Dusun di Sabah. Tidak hairanlah Momogun Rungus ini sering kali juga di kenali sebagai Dayak Laut atau Dayak Dusun.

Selain di Malaysia, bangsa Momogun juga turut di temui di negara-negara jiran seperti Indonesia dari rumpun Dayak Uud Danum dan Brunei iaitu Dusun Brunei di dapati bahawa bahasa mereka juga mempunyai kesamaan dengan bahasa Momogun.

Apa yang jelas bangsa Momogun merupakan penduduk asli kepulauan Borneo iaitu kepulauan ketiga terbesar di dunia.

INFO Sistem Komputer




Sistem komputer merupakan satu gabungan perisian dan perkakasan komputer yang memproses data secara bermakna. Sebagai contoh, komputer peribadi atau PC merupakan satu sistem komputer yang mudah. Manakala Internet merupakan satu sistem komputer yang agak rumit.

Komputer yang paling mudah pun dikira sebagai satu sistem komputer, kerana kedua-dua komponennya (perisian dan perkakasan) perlu bekerjasama. Dan bila berkata tentang sistem komputer, satu perkara yang turut diperkatakan ialah "saling sambungan" (interconnection). Kebanyakan sistem komputer saling bersambung/berhubung untuk menjadi sistem yang lebih besar. Penyambungan ini boleh menjadi rumit disebabkan oleh ketakserasian antara perisian-perisian dan perkakasan-perkakasan sistem tersebut.

Pereka sesuatu sistem komputer mungkin tidak mengambil kira faktor sambungan produk mereka dengan sistem lain, contohnya Mac dengan PC. Menjadi tugas penyelia sistem (systems administrator) untuk menghubungkan pelbagai komputer menggunakan satu set peraturan dan kekangan yang dipanggil protokol; yang mentakrifkan "pandangan luar" (outside view) sistem tersebut. Pandangan luar inilah yang menentukan bagaimana satu sistem bersambung dengan sistem yang lain. Jika dua sistem mempunyai pandangan luar yang sama, maka ia boleh saling bersambung dan menjadi sistem komputer yang lebih besar.

"Pandangan luar" ini biasanya mempunyai piawai tersendiri, yang bermakna ia mempunyai satu dokumen yang menerangkan semua peraturan yang perlu dipatuhi sesuatu program atau peranti. Badan antarabangsa seperti Pasukan Bertindak Kejuruteraan Internet (IETF) atau Institut Kejuruteraan Elektrik & Elektronik (IEEE) biasanya menghasilkan atau mengiktiraf piawaian-piawain tersebut. Jika sesuatu sistem mengikut segala peraturan tersebut, ia dikatakan "mematuhi" piawaian tersebut.

Organisasi sistem komputer merupakan cara sesuatu ciri itu dilaksanakan. Ia melihat bagaimana pereka sistem menggambarkan maklumat kepada CPU, ingatan utama dan storan komputer.

Monday, October 6, 2008

INFO Tamadun Islam dan Asia

Tamadun berasal dari perkataan Arab maddana, mudun, madain yang bererti pembukaan bandar atau masyarakat yang mempunyai kemajuan dari segi lahiriah dan rohaniah. Perkataan tamadun dapat diertikan kepada keadaan hidup bermasyarakat yang bertambah maju. Istilah-istilah lain yang sama pengertiannya dengan tamadun adalah: umran, hadarah, madaniyah. Dalam bahasa Inggeris, istilah yang hampir sama dengan tamadun ialah culture and civilization atau kebudayaan dalam bahasa Melayu. Perkataan civilization dalam bahasa inggeris berasal dari bahasa Greek civitas yang bermaksud bandar. Para sarjana telah membahas persamaan dan perbezaan istilah-istilah tersebut. Istilah Tamadun banyak digunakan dalam penulisan Tamadun Islam.

Cont. INFO Biokimia

Elakkan mengambil makanan segera

Pasti anda(mungkin kanak-kanak atau orang yang sudah dewasa) rambang mata kalau pergi ke kedai runcit. Macam-macam kerepek, 'jajan', gula-gula ada dijual di kedai itu dan anda merasakan hendak membeli semua makanan ringan itu.

Kalau keluar berjalan-jalan di pusat membeli-belah pula, pasti mata anda tertumpu pada kedai-kedai atau restoran makanan segera kan? Ditambah lagi dengan pelbagai hadiah mainan yang menarik, makin membuak-buak keinginan anda untuk memasuki kedai makanan segera itu.

Tetapi anda tahu tak kenapa makanan segera itu tidak elok kepada kesihatan badan? Terdapat beberapa kesan yang tidak elok sekiranya mengambil makanan segera terlalu kerap.

[sunting] Kesan mengambil makanan segera

1. Obesiti - Tahukah anda bahawa makanan segera merupakan punca kegemukan. Tak percaya? Dalam sebiji burger sahaja terdapat 35 peratus lemak. Itu tidak termasuk lagi dengan hidangan yang lain seperti ais krim, kentang goreng, ayam goreng, dan sebagainya. Memang lazat tetapi sanggupkah anda menderita sebelum tua akibat keseronokan yang sememangnya dapat dikecapi hanya seketika sahaja?

2. Ketahanan badan menjadi lemah. Ini kerana terdapat banyak bahan kimia dimasukkan sekali dalam makanan sebagai perisa tambahan. Bukan itu sahaja, pewarna tiruan juga memberikan kesan kepada ketahanan badan manusia.

3. Penambahan kolestrol dan kalori secara mendadak dalam badan. Macam mana itu? Anda hendak tahu? Dengan mengambil makanan ringan secara kerap dan banyak akan menyebabkan kolestrol dan kalori masuk ke dalam badan. Kalau anda sempat membaca kandungan bahan pada plastik pembungkus makanan segera, anda akan mengetahui jumlah kandungan kalorinya. Setiap jenis makanan segera mempunyai kandungan minyak, lemak, dan karbohidrat yang tinggi. Kalau anda sudah tahu, pasti ramai yang akan kurangkan pengambilan makanan segera.

4. Diabetes - Anda tahu apakah maksud diabetes? Ia merupakan satu penyakit yang lebih dikenali sebagai kencing manis. Salah satu penyebab penyakit kencing manis adalah pengambilan makanan yang mempunyai kandungan gula yang tinggi. Air birkabonat dan bergas merupakan sumber utama kepada diabetes kerana kandungan gulanya memang tinggi.

5. Kanser - Tahukah anda bahawa kandungan bahan kimia dan perisa yang ada dalam makanan ringan dan segera boleh menyebabkan kanser. Takut kan?

[sunting] Senarai makanan segera yang kurang elok untuk kesihatan

Apa? Anda baru lepas makan mi segera? Mesti sedap kan? Tapi anda kena ingat, mi segera merupakan makanan segera yang tidak elok diamalkan sebagai makanan harian. Hendak tahu kenapa? Perencah mi segera itu mempunyai perisa ynag berlebihan dan kandungan garam yang tinggi.

Kalau anda hendak tahu, banyak lagi makanan segera yang tidak baik untuk kesihatan. Lihat contoh makanan segera di bawah ini:

i) Kentang goreng - terlalu banyak lemak dan garam dan banyak menggunakan pewarna tiruan.

ii) Burger daging - kandungan lemak yang tinggi dan bahan kimia yang banyak.

iii) Makanan ringan(jajan) - mempunyai garam dan pewarna yang tinggi.

iv) Air bikarbonat - kandungan gula yang sangat tinggi.

[sunting] Makanan yang boleh menggantikan vitamin

Susah hendak dapatkan vitamin? Anda jangan risau sebab vitamin ada di rumah anda sendiri. Tidak percaya? Cuba anda pergi ke dapur. Di dapur ada banyak sayur-sayuran dan buah-buahan.

Kalau anda hendak tahu, lobak, kubis, tomato, buah limau, epal, dan banyak lagi merupakan sumber vitamin. Setiap sayur-sayuran dan buah-buahan mempunyai kandungan vitamin.

Boleh dikatakan hampir semua makanan mempunyai kandungan vitamin. Cuma yang membezakan adalah jenis-jenis vitaminnya.

i) Tomato - kaya dengan vitamin A, C, dan serat juga zat besi.
ii) Avokado - kaya dengan khasiat protein, kalsium, zat besi, vitamin A dan C.
iii) Pisang - vitamin A dan C, potasium dan zat besi.
iv) Nanas - vitamin A, B, dan C.
v) Telur, susu, hati - menyediakan vitamin A.
vi) Kekacang dan daging - sumber kepada vitamin B1.
vii) Keju, putih telur, dan yogurt - menyediakan vitamin B2.
viii) Ubi kentang, sardin, dan tuna - sumber untuk vitamin D.
ix) Sayuran berdaun hijau, kacang soya, dan gandum - kaya dengan vitamin E.
x) Kubis dan daun salad - penyumbang kepada vitamin K.

[sunting] Panduan mengambil vitamin

Terdapat sebuah cerita yang mempunyai kaitan dengan tajuk yang dikehendaki ini.

"Amelia terlihat sebotol vitamin C di atas peti ais rumahnya. Lalu dia terus mengambil dua biji vitamin dan memakannya."

Tahukah anda, tindakan Amelia tersebut membahayakan? Anda tidak boleh mengambil sebarangan ubat tanpa perhatian orang dewasa. Mungkin ubat atau vitamin tersebut tidak sesuai dengan ketahanan badan seseorang. Mungkin juga itu bukan vitamin!

Jadi di sini, nasihat yang dapat dikatakan adalah mengikuti peraturan dan panduan ini supaya apa yang anda makan seperti vitamin, tidak akan memudaratkan kesihatan anda.

a. Pastikan vitamin yang diambil telah mendapat kelulusan doktor dan klinik yang berdaftar.

Jangan mengambil sebarangan vitamin kerana bimbang ia tidak mendapat kelulusan yang ditetapkan. Ikuti nasihat doktor pakar sekiranya anda dikehendaki mengambil vitamin.

b. Baca terlebih dahulu label dan kandungan vitamin yang terpapar pada botol.

Anda kena tahu vitamin apa yang anda ambil dan makan. Adakah keterangan yang terpapar di botol tersebut tertulis vitamin A atau C? Kalau anda merasa ragu-ragu dengan tulisan pada botol tersebut, cuba minta pertolongan ibu atau ayah anda. Ini kerana mungkin ada perkataan yang anda tidak fahamkan?

c. Jangan mengambil dos secara berlebihan.

"Kalau makan banyak vitamin, adik lagi sihat kan?" tanya Yani kepada emaknya. Sebenarnya tidak semestinya mengambil vitamin dalam kuantiti yang banyak membuatkan anda lagi sihat sebaliknya anda akan mengalami pelbagai penyakit disebabkan kesilapan mengambil dos. Jadi, ambillah vitamin pada kadar yang telah ditetapkan. Lazimnya, tidak melebihi dua biji untuk satu jenis vitamin.

d. Suruh ibu bapa temani semasa mengambil vitamin.

Sebaiknya kehadiran ibu atau bapa di sisi semasa mengambil vitamin adalah lebih elok. Bukan apa, kalau ada di kalangan ada yang mempunyai masalah semasa memakan vitamin, ibu bapa yang berada di sisi boleh menenangkan anda kan? Lagipun, mereka boleh membantu seperti memberikan air ataupun sebagainya.

e. Pastikan vitamin disimpan di tempat yang selamat.

Kalau anda hendak tahu, vitamin seelok-eloknya disimpan di tempat yang kering dan sejuk. Ia juga tidak boleh terdedah kepada cahaya matahari. Jadi, mulai sekarang, anda simpanlah vitamin di tempat yang sepatutnya.

INFO Biokimia

Biokimia merupakan salah satu cabang sains yang menemukan dua bidang sains yang penting, iaitu biologi dan kimia (seperti yang terdapat dalam nama bidang ini). Bidang ini mengkaji bahan-bahan kimia yang terdapat dalam benda hidup iaitu mengenai haiwan, tumbuhan dan mikrorganisma.

Biokimia merujuk kepada pengkajian mengenai bahan kimia yang dihasilkan oleh benda hidup, kesannya, kegunaannya, dan cara memanfaatkan bahan aktif tersebut bagi meningkatkan taraf hidup manusia.

Antara kelas bahan kimia yang dikaji dalam bidang biokimia ialah

* karbohidrat
* lipid
* protein atau asid amino
* asid nukleik
* vitamin

Friday, October 3, 2008

INFO Pertanian

Apa itu Pertanian??

Pertanian (Inggeris: agriculture) (meliputi cucuk tanam, ternakan dan kebun buah-buahan) adalah pengeluaran bahan makanan, makanan ternakan, fiber, biofuel dan bahan lain melalui suatu sistem ternakan atau tanaman.

Terjemahan bahasa Inggerisnya, agri dari bahasa Latin ager, bermakna "a field" (iaitu sebidang tanah), dan culture dari bahasa Latin cultura, bermakna "cultivation" iaitu tillage of the soil. Secara literal, pembacaan dalam bahasa Inggeris menjadikannya : tillage of the soil of a field. Dalam pengunaan moden, perkataan agriculture meliputi semua aktiviti penting bagi pengeluaran makanan/makanan ternakan/fiber, termasuk tatacara untuk menternak dan memproses ternakan. "Agriculture" juga merupakan singkatan bagi pelajaran kaedah pertanian—lebih dikenali sebagai sains pertanian (agricultural science).

Sejarah pertanian merupakan elemen utama dalam sejarah manusia kerana tahap peningkatan pertanian menjadi satu faktor penting dalam perubahan sosioekonomi secara sejagat, termasuk peningkatan kekayaan dan ketenteraan yang jarang dilihat dalam budaya "hunter-gatherer" — di mana petani berupaya mengeluarkan makanan melebihi keperluan diri dan keluarganya, dan dengan itu sebahagian dari ahli puak/kaum/negeri/negara nya boleh melibatkan diri mereka dalam bidang lain daripada pertanian.

42% dari pekerja dunia adalah di dalam bidang pertanian, dengan itu ianya merupakan perkerjaan yang terbesar di dunia. Walau bagaimanapun, pengeluaran pertanian hanya menyumbang kepada kurang dari 5% keluaran dunia kasar (iaitu aggregat kepada semua keluaran dalam negara kasar.[